APIE2025第6届

亚太国际智能装备博览会

The 6th Asia-Pacific International Intelligent Equipment Exposition

2025.7.17-20 青岛红岛国际会议展览中心
动态正文
人工智能在物流行业的典型应用场景-仓储管理
2021-09-17

不同的典型物流行业场景有不同的特点,所需要的技术也不尽相同,应当根据实际的需求确定技术的应用。



仓储管理


仓储管理包括入库、存储和出库(拣货)等重要环节,涉及到数量庞大的物流机器人、自动仓储设备、运输设备和人员,占用了企业的大量资金。将仓储管理智能化,将为物流行业带来颠覆性的改变。

(1)智慧存储设备:目前,在仓储环节应用的物流设备种类丰富,功能各异。历史发展悠久的堆垛机货架,更加高效的多层穿梭车系统,针对小料箱的高效存储设备MiniLoad等。针对仓储设备的智能化运行,计算机视觉、深度神经网络、机器学习、自动控制等技术的应用,将极大的提升存储设备的周转效率,尽可能的提高设备的利用率;针对仓储设备的科学规划和实施,大数据分析和专家系统等技术,能够提升系统规划的效果;针对仓储设备的维护和保养,采用基于设备数据的寿命预测技术,能够准确、预先的对设备的状态进行掌握,便于提前采取措施。冷库存储是存储行业的一个特殊领域,对生鲜、药品等特殊商品需求较大。人工智能技术打造的新型自动化冷库,利用大数据分析可将采购预测与仓储现状结合,自动控制技术可以针对冷库低温的特点,更好地控制仓储货架所用的穿梭车和堆垛机、搬运使用的叉车、码垛使用的码垛机器人等设备。


(2)智能分拣系统:智能分拣系统包括分拣过程中使用的运输设备如AGV、智能分拣车、传送带等,以及分拣过程中的信息流。路径规划、机器视觉等技术,将赋予运输设备更多的智能,使得无人运输更加安全、高效。数据挖掘、大数据分析等技术,能够将拣选订单进行更合理的拆分与合并,并与仓储设备、运输设备和人员形成联动,实现更高效的订单拣选。

(3)智慧盘库系统:库存盘点是一项耗费人力和物力的工作,但不能直接产生经济效益,因此,降低盘库的成本、提升效率很有必要。计算机视觉、图像识别、无人机等技术,能够迅速地对货物种类和数量进行盘点,相比于人工盘点,效率更高,准确率更高。


返回列表